
IJSRST1841310 | Received:01March 2018 | Accepted :07March2018 | March-April-2018 [(4)5 : 18-23] 

 

© 2018 IJSRST | Volume 4 | Issue 5| Print ISSN: 2395-6011 | Online ISSN: 2395-602X 
Themed Section: Scienceand Technology 

 

  18 

Recognize and Monitor Kernel Virtualization Using Memory 

Heat Map  
G. Soujanya Lakshmi1, P.S. Naveen Kumar2 

1PG Scholar, Department of MCA, St.Ann’s College of  Engineering&Technology, Chirala, Andhra 

Pradesh,India 
2Assistant Professor, Department of MCA, St.Ann’s College of Engineering& Technology, Chirala, Andhra 

Pradesh,India 

ABSTRACT 
 

Increasingly cyber attacks target the inner rings of a computer system, and they have seriously undermined the 

integrity of the entire computer systems. We focus on the threat posed by smart phone root kits. Root kits are 

malware that stealthily modify operating system code and data to achieve malicious goals, and have long been a 

problem for desktops. We propose, in this paper, an autonomic architecture called SHARK. Secure Hardware 

support Against Root Kit by employing hardware support to provide system-level security without trusting the 

software stack, including the OS kernel. Smart phones expose several unique interfaces, such as voice, GPS and 

battery that root kits can exploit in novel ways. The emergence of hardware virtualization technology has led 

to the development of OS independent malware such as the Virtual Machine based rootkits (VMBRs). We draw 

attention to a different but related threat that exists on many commodity systems in operation today: The 

System Management Mode based root kit (SMBR). System Management Mode (SMM) is a relatively obscure 

mode on Intel processors used for low-level hardware control the predictable nature of real-time embedded 

applications. We introduce Memory Heat Map (MHM) to characterize the memory behavior of the operating 

system. Our machine learning algorithms automatically summarize the information contained in the MHMs 

and then detect deviations from the normal memory behavior patterns. Normally kernel can be protected by 

using three different strategies which includes monitoring the invoked process snooping the incoming packets 

at network level and establishing trust of a process by using TCB(Trusted computing Base updated by the admin) 

different methods in different layer for example In network layer by snooping incoming packets. 

Keywords: Kernel, OS, Process monitoring, Malware analysis, Virtual Machine Monitor, memory heat map, 

real-time systems, Malware, Virtualization, Operating System Security. 

 

I. INTRODUCTION 

 

Over the last tend the decreasing cost of advanced 

computing and communication hardware has access 

mobile phones to evolve into general purpose 

computing platforms. Over 115 million such smart 

phones uses worldwide in 2007 [1]. These phones are 

equipped with a rich set of hardware interfaces and 

application programs that let users interact better with 

the cyber and the physical worlds [2]. We show that 

smart phones are just as vulnerable as desktop 

operating systems to kernel-level root kits. Root kits 

are malware that achieve their malicious goals by 

infecting the operating system [3]. We propose a 

process context-aware architecture called SHARK is 

identify process contexts that are utilizing hardware 

resources without the OS’ decree. By making use of 

such architecture system administrators can directly 

examine the feedback provided by the underlying 

hardware and compare it against the OS retrieved data 



International Journal of Scientific Research in Scienceand Technology (www.ijsrst.com) 

 

19 

to know the state of the un-trusted OS [4]. In this 

work we focus on techniques to reveal malware 

applications malware virtual machines and 

hypervisors running in stealth. To the best of our 

knowledge this is the first effort using a synergistic 

micro architecture and OS technique to address the 

root kit exploits [5]. Location tracking with GPS 

presents a root kit that compromises privacy of a 

victim’s location. When an attacker sends a command 

to a root kit infected phone the root kit queries the 

GPS device and sends the victim’s coordinates to the 

attacker[6].  Denial of service via battery exhaustion 

smart phones is battery operated and is hence resource 

constrained. We demonstrate a root kit that stealthily 

exhausts a smart phone’s battery. This attack renders 

the phone unusable when its user needs [7]. 

Unfortunately, these techniques are useless against 

Virtual Machine Based Root kits (VMBRs) which have 

the ability to exist independently of any OS. Such root 

kits are able to exert an alarming degree of control 

without modifying a single byte in the Operating 

System [8]. This process is invisible to the OS. Once 

installed the VMM is capable of transparently 

intercepting and modifying states and events 

occurring in the virtualized OS. The VMBR has 

virtualized memory its code footprint will also be 

invisible. These things make a VMBR extremely 

difficult to detect [9]. 

 
Figure 1. Architecture Overview of FB-DIMM 

 
II. RELATED WORK 

 

Root kit detection tools on desktop computer systems 

are largely centered on known techniques used by 

root kits to hide their presence [10]. Early root kits 

operated by replacing system binaries and shared 

libraries on disk with Trojan versions which would 

hide malicious objects owned by the attacker [11]. 

Memory subversion was first implemented the 

Shadow Walker root kit demonstrated that it was 

possible to control the view of memory regions seen 

by the operating System and other processes by 

hooking the paging mechanism and exploiting the 

Intel split TLB architecture [12]. Using these 

techniques it was capable of hiding both its own code 

and changes to other Operating System components. 

This enabled it to fool both signature and heuristic 

based scans [13]. Virtual-machine based root kits have 

many characteristics in common with the System 

Management Mode based root kit presented it hides 

its code footprint using memory virtualization 

supports nested virtual machine monitors, and 

implements countermeasures against timing based 

detections [14]. Our solution is used to the emerging 

DDR4 by integrating our new components with the 

DDR4 switch fabric a topic of future research [15]. For 

fully buffered DRAM it is crucial that we have to 

make sure that there is no performance penalty with 

the inspection of the memory traffic because such 

overhead will likely violate DRAM time constraint 

and render the solution useless [16]. 

 

III. SHARK ARCHITECTURE 

 

After exploring possible architectural method it is 

evident that all the shortcomings were due to the 

tightly coupled dependency of these mechanisms with 

the OS itself which could have already been 

compromised [17]. As such detecting root kits with 

OS direct intervention will always fail to address this 

issue once and for all users to design processor 

architecture to be process context-aware [18]. We 

propose a novel processor architecture called SHARK, 

which stands for Secure Hardware support Against 

Root Kit. In a SHARK processor the master control of 

processes is delegated to the hardware for enforcing 

the security of process contexts [19]. Hardware 

Assisted PID Generation Process Page Table 



International Journal of Scientific Research in Scienceand Technology (www.ijsrst.com) 

 

20 

Encryption and Decryption, and Process 

Authentication into one processor These mechanisms 

are implemented within the SHARK security manager, 

a hardware-based micro architectural extension while 

working seamlessly with the OS. The following 

sections detail each component in SHARK [20]. 

 
Figure 2. Architectural Support for SHARK Processor 

 

IV. MEMORY HEAT MAP 

 

A memory region is divided into cells, each with a size 

each cell counts the number of accesses to a region of 

size δ for a specified time interval. One can even 

consider it to be the temperature of each cell. The 

temperature of each cell on its own may not reveal 

useful information; due to variations caused by 

numerous factors the state of the entire map may 

reveal important system activities [21]. An MHM 

represents a composition of memory accesses from a 

variety of system activities due to applications and OS. 

MHM can be represented by a weighted combination 

of the primary activities; where the weights represent 

their contributions to the MHM [22]. 

 
Figure 3. The secure architecture for memory using 

memometer 

 

A.  HARDWARE ASSISTED INTEGRITY 

MONITOR 

Hyper Check is composed of three key components: 

the physical memory acquiring module the analysis 

module and the CPU register checking module. The 

memory acquiring module reads the contents of the 

physical memory of the machine and sends them to 

the analysis module [23]. It checks the memory 

contents and verifies if anything is altered the CPU 

register checking module reads the registers and 

validates their integrity [24]. We use hardware  a PCI 

Ethernet card as a memory acquiring module and 

SMM to read the CPU registers. Usually, Ethernet 

cards are PCI devices with bus master mode enabled 

and are able to read the physical memory through 

DMA which does not need help from CPU [25]. SMM 

is an independent operating mode and could be made 

inaccessible from protected mode hence hypervisor 

and privileged domains cannot run [26].  PCI devices 

cannot read the CPU registers, thereby failing to 

detect this kind of attacks. By using SMM, Hyper 

Check can examine the registers and report the 

suspicious modifications [27]. 



International Journal of Scientific Research in Scienceand Technology (www.ijsrst.com) 

 

21 

 
Figure 4. Hyper check 

 

B.  SMM Memory Space 

The System Management Memory Space (SMRAM) is 

used to hold the processor state information saved 

upon an entry to SMM the SMI handler and its 

associated data [28]. The Intel chipset documentation 

defines three locations for SMRAM: Compatible, High 

Memory Segment (HSEG), and Top of Memory 

Segment (TSEG). Structurally the SMRAM space 

consists of a state save area and the System 

Management Interrupt (SMI) handler. The remaining 

space is available for use by the handler for data and 

stack storage. An internal processor register called 

SMBASE holds the physical address pointer to the 

start of the SMRAM space [29]. The SMBASE value is 

also stored in the state save area. Furthermore, the 

state save area is located at an offset from the 

beginning of SMRAM in physical memory. 

 
Figure 5. SMRAM memory accesses 

 

1. On a host machine, an attacker makes SMRAM 

visible from security mode for reading and writing by 

setting the D_OPEN bit. 

 2. Once D_OPEN is set, the attacker copies the root 

kit SMM handler code to the handler security  of 

SMRAM as defined by the Intel documentation.  

3. Finally, the attacker clears the D_OPEN bit and sets 

the D_LCK bit. This has the effect of making SMRAM 

invisible to everything other than the subverted SMI 

handler and of locking the SMRAMC register so that 

it can no longer be modified. 

 

C. ROOTKITS ON SMART PHONES 

We present three proof-of-concept root kits that we 

developed to illustrate the threat that they pose to 

smart phones. We chose this platform because (a) 

Linux source code is freely available, thereby allowing 

us to study and modify its data structures at will; and 

(b) the Neo Free runner allows for easy 

experimentation it allows end-users to re-flash the 

phone with newer versions of the operating system 

[30]. We expect that these LKMs will be delivered via 

other mechanisms after an attacker has compromised 

a network-facing application or via a drive by-

download attack presents the lines of code needed to 

implement each attack, and the size of the 

corresponding kernel module. it stealthily dials the 

attacker’s phone is listen into or remotely record 

ongoing conversations. Alternatively, the root kit 

could trigger when the victim dials a number [31]. 

 
Figure 6. The GSM root kit intercepts 

 

V. EXPERIMENTAL ANALYSIS  

We conducted two sets of experiments to evaluate the 

proposed SHARK Security Manager. First, we 

evaluated the practicality and strength of the proposed 

scheme against malware running in stealth using real 

kernel root kits available on Linux. We performed 



International Journal of Scientific Research in Scienceand Technology (www.ijsrst.com) 

 

22 

performance experiments to quantify the overheads 

incurred by the SHARK architecture. We obtained 

cycle information from VirtutechSimics with its cache 

model enabled. Staller will stall the cycle accounting 

mechanism whenever a cache miss occurs. The 

moment when the root kit is being loaded is 

distinguishable as expected after the launch the traffic 

does not show abnormalities in terms of the volume. 

This is because the root kit still calls the original read 

handler which resides in the region being monitored. 

 

 
Figure 8. The root kit hijacks read system calls 

 

VI. CONCLUSION 

 

SHARK is process context aware it employs secure 

hardware support to provide system-level security 

without trusting the software stack, including the OS 

kernel. The proposed mechanisms including hardware 

PID, page table encryption, and process 

authentication, tightly couple the dependency 

between the OS and hardware architecture, making 

the entire system more security-aware. Under SHARK, 

the concealed malware at user, kernel and VMM 

levels of the software stack will be revealed 

automatically by the synergistic cooperation between 

SHARK and the software stack. Root kits evade 

detection by compromising the operating system, 

thereby allowing them to defeat user-space detection 

tools and operate stealthily for extended periods of 

time. We suggest that the emergence of such malware 

necessitates a shift in perspective from detection to 

prevention and that a closer relationship between 

security researchers and hardware developers should 

be fostered. We also plan to extend the architecture to 

support more than two cores and evaluate the 

required hardware changes, and to explore Deep 

Learning-based technique to deal with more complex 

embedded systems. Virtual machine security is very 

important in cloud computing, we have discussed 

various virtual machine architectures & its techniques 

to prevent malicious attacks in kernel. 

 

VII. REFERENCES 

 

[1]. N. L. Petroni, Jr., T. Fraser, J. Molina, and W. A. 

Arbaugh, “Copilot - a coprocessor-based kernel 

runtime integrity monitor,” in Proceedings of the 

13th conference on USENIX Security Symposium - 

Volume 13, ser. SSYM'04. Berkeley, CA, USA: 

USENIX Association, 2004, pp. 13-13 

[2]. Google fixes android root-access flaw 

news/security/0,39044215,62048148,00.htm. 

[3]. Mcafee mobile security report 2008. 

research/mobile_security_report_2008.html. 

[4]. National institute of science and technology fips pub 

180-2: Sha256 hashing algorithm.  

[5]. Rootkits,The Growing Threat, McAfee. rootkits1 

en.pdf. 

[6]. Vinod Ganapathy Arati Baliga and Liviu Iftode. 

Automatic inference and enforcement of kernel data 

structure invariants. In ACSAC '08: Proceedings of 

the Annual Computer Security and Applications 

Conference, 2008.  

[7]. Arati Baliga, Liviu Iftode, and Xiaoxin Chen. 

Automated containment of rootkits attacks. 

Computers & Security, 27(7-8):323 - 334, 2008. 

[8]. J. Rutkowska. Subverting Vista Kernel for Fun and 

Profit. Presented at Black Hat USA, Aug. 2006.  

[9]. Intel Corporation. Intel 64 and IA-32 Architectures 

Software Developer's Manual Volume 3B: System 

Programming Guide, Part 2. May 2007. 

[10]. Arati Baliga, Liviu Iftode, and Xiaoxin Chen. 

Automated containment of rootkits attacks. 

Computers & Security, 27(7-8):323 - 334, 2008.  

[11]. Arati Baliga, Pandurang Kamat, and Liviu Iftode. 

Lurking in the shadows: Identifying systemic threats 



International Journal of Scientific Research in Scienceand Technology (www.ijsrst.com) 

 

23 

to kernel data. In SP '07: Proceedings of the 2007 

IEEE Symposium on Security and Privacy, 2007. 

[12]. Intel Corporation. Intel 64 and IA-32 Architectures 

Software Developer's Manual Volume 3A: System 

Programming Guide, Part 1. May 2007. 

[13]. Intel Corporation. Intel 82801DB I/O Controller Hub 

4 (ICH4). May 2002. 

[14]. Intel Corporation. Intel 845GE/845PE Chipset 

Datasheet. Oct. 2002. 

[15]. N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, 

A. G. Saidi, and S. K. Reinhardt. The m5 simulator: 

Modeling networked systems. IEEE Micro, 26(4):52-

60, July 2006. 

[16]. Buffer. Hijacking linux page fault handler. Phrack 

Magazine, 0x0B, 0x3D, Phile #0x07 of 0x0f, 2003. 

[17]. Intel. Intel 64 and IA-32 Architectures Software 

Developer's Manual Volume 3A: System 

Programming Guide, Part 1, 2007. 

[18]. T. Kgil, L. Falk, and T. Mudge. Chiplock: support for 

secure microarchitectures. SIGARCH Computer 

Archititecture News, 33(1):134-143, 2005. 

[19]. S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, 

H. J. Wang, and J. R. Lorch. SubVirt: Implementing 

malware with virtual machines. In Proceedings of 

the 2006 IEEE Symposium on Security and Privacy, 2 

[20]. P. Magnusson, M. Christensson J. Eskilson, D. 

Forsgren, G. Hallberg, J. Hogberg, F. Larsson, A. 

Moestedt, and B. Werner. Simics: A Full System 

Simulation Platform. IEEE Computer, Feb. 2002. 

[21]. S. Chen, B. Falsafi, P. B. Gibbons, M. Kozuch, T. C. 

Mowry, R. Teodorescu, A. Ailamaki, L. Fix, G. R. 

Ganger, B. Lin, and S. W. Schlosser. Log-based 

architectures for general-purpose monitoring of 

deployed code. In Workshop on architectural and 

system support for improving software dependability, 

2006. 

[22]. J. Criswell, N. Dautenhahn, and V. Adve. Kcofi: 

Complete control-flow integrity for commodity 

operating system kernels. In IEEE Symposium on 

Security and Privacy, 2014. 

[23]. H. Etoh. GCC Extension for Protecting Applications 

From Stacksmashing Attacks. Accessed May 2011. 

[24]. Vendicator. Stack Shield: A “Stack Smashing” 

Technique Protection Tool for Linux. Accessed May 

2011. 

[25]. Bypassing Non-executable-stack during Exploitation 

using Return-tolibc. Phrack Magazine. 

[26]. E. Buchanan, R. Roemer, H. Shacham, and S. Savage. 

When Good Instructions Go Bad: Generalizing 

Return-Oriented Programming to RISC. In 

Proceedings of the 15th ACM Conference on 

Computer and Communications Security (CCS'08), 

pages 27-38. ACM Press, Oct. 2008. 

[27]. Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel 

Rosenblum, and Dan Boneh. Terra: A virtual 

machine-based platform for trusted computing. In 

SOSP03: ACM Symposium on Operating System 

Principles, October 2003.  

[28]. Tal Garfinkel and Mendel Rosenblum. A virtual 

machine introspection based architecture for 

intrusion detection. In Proc. Network and 

Distributed Systems Security Symposium, 2003.  

[29]. M. Hypponen. The state of cell phone malware in 

2007.  

[30]. Nick L. Petroni Jr., Timothy Fraser, Jesus Molina, and 

William A. Arbaugh. Copilot - a coprocessor-based 

kernel runtime integrity monitor. In Security '04: 

Proceedings of the USENIX Security Symposium, 

2004.  

[31]. Gene H. Kim and Eugene H. Spafford. The design 

and implementation of tripwire: a file system 

integrity checker. In CCS '94: Proceedings of the 2nd 

ACM Conference on Computer and communications 

security,1994. 

 
ABOUT AUTHORS: 

G.SOUJANYA LAKSHMI is currently 

pursuing her MCA in MCA Department, 

St.Ann’s College Of Engineering and 

Technology, Chirala,  A.P. She received her 

Bachelor of science from ANU. 

P.S.NAVEEN KUMAR received his M.Tech. 

(CSE) from jntu Kakinada. Presently he is 

working as an Assistant Professor in MCA 

Department, St.Ann’s College Of Engineering 

&Technology , Chirala. His research includes networking and 

data mining  

 


